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Abstract Results are reported of extensive molecular dynamics (MD) simulations of a simple 
model of the prototype metal-salt solution Kz(KCI)~-x. The Coulomb interactions between 
ions are assumed to be screened by the degenerate valence electrons, within the Thomas-Fmi 
approximation. The main emphasis is on the concenhtion ( x )  dependence of the density and 
charge fluctuation spectra. The MD data for these si” are analysed in term of the extended 
mode concepg by fining the data UI superpositions of Larentzians, with wavenumberdependent 
coefficients. This analysis clearly shows the emergence, in addition Io an extended acoustic 
(sound) mode, of a high-frequency optic mode at intermediate and low metal concenkations x.  
This mode may be considered as a remnant of the well known propagating charge fluctuation 
(or plasmon) mode in molten salts: at finite z the optic mode is strongly affected by electron 
saeening. ’!’he subtie intaplay behveen acoustic and optic modes is in qualitative agreement 
with the predictions of 8 recent generalid, hydrodynamics analysis. , , 

1. Introduction 

There are two main classes of conducting liquid liquid metals or alloys, which exhibit 
large electrical conductivities associated with the highly mobile valence electrons, and ionic 
liquids including molten salts and ionic solutions with much lower mnductivities, which 
originate in the mutual diffusion of anions and cations. A very interesting combination of 
metallic and ionic behaviour may be found in molten mixtures of metals and salts that share 
the same cation. The simplest and most widely studied among these are solutions of alkali 
metals in their halides, of the form M,(MX),-,, where M denotes the metal, X the halogen 
and x is the mole fraction of metal. As x is varied from zero to one, the melt changes 
continuously from a pure ionic liquid, the alkali halide MX, to a pure liquid metal. Upon 
decreasing x ,  the initially nearly free valence electrons undergo a continuous metal-non- 
metal transition towards highly localized states, as signalled by a rapid drop of the electrical 
conductivity; in the pure-salt limit no valence electrons are left, and the conductivity is 
purely ionic in nature. 

The gradual change in electronic structure gives rise to a number of remarkable 
thermodynamic and structural propenies of Mx(MX)l-x melts. The melting temperature 
drops by more than a factor of two between the salt and metal limits. Some of the 
melts, like Rb,(RbBr),-,, exhibit a miscibility gap at intermediate concentrations [I], 
and strong concentration fluctuations are signalled by intense small-angle scattering in 
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neutron diffraction experiments [Z], even in solutions like K,(KCI)l-,, which mix at 
all concentrations. The latter solution is found to expand at constant temperature, as 
electrons progressively replace the anions, from about 50 cm3 mol-’ for pure KCI, to about 
60cm3 mol-’ for pure K, at T N 1OOOK. The change in molar volume with x deviates 
strongly from linearity, giving rise to an unusually large excess molar volume, which 
moreover changes from negative to positive values as x increases [3]. The ionic pair 
structure, as measured by neutron scattering experiments [Z], changes dramatically with 
concentration, and crosses over from metallic like to ionic like at unexpectedly high values 
of x (x 

Many of these features are reproduced, at least qualitatively, by simple models of 
metal-salt solutions, where the valence electrons are replaced by a neutralizing background, 
which is treated either as rigid [4,5] or polarizable [6]. While this oversimplification 
of the electronic structure may be reasonable on the metal-rich side (x Y I), where 
the relatively weak ion-elecunn coupling is well described by second-order perturbation 
Cieory [7]. it does lead to some significant discrepancies with experiment at intermediate 
concentrations, in particular as regards the small-angle scattering, or the sign of the 
excess molar volume. Despite their shortcomings, the above-mentioned models have been 
extended to investigate dynamical collective modes in simple metal-salt solutions, for which 
much fewer experimental data are available, but which are the object of current inelastic 
neutron scattering experiments [8]. The long-wavelength collective modes of the rigid 
electron background model have been analysed within linearized hydrodynamics 191; the 
main prediction of this analysis is the overdamping of the sound mode, which ceases 
to propagate below a concentration-dependent critical wavenumber on the salt-rich side. 
However, strictly speaking, this prediction applies only to the rather unphysical model 
for the electronic structure; electron polarization and screening are expected to induce 
qualitative changes in the ionic density and charge fluctuation spectra [9-11]. Moreover, 
the hydrodynamic analysis only applies to low frequencies, and the frequency dependence 
of the ionic conductivity must be allowed for in order to investigate the high-frequency 
optic mode [9,12]. Electron polarization is approximately accounted for in a model where 
ions interact via effective screened Coulomb potentials. In [I31 the memory function 
formalism was used to examine the longitudinal collective modes of the screened Coulomb 
model for K,(KCI)t-,. This analysis pointed to an interesting concentration dependence 
of the dispersion C U N ~ S  and to a subtle interplay between acoustic and optic branches of 
the longitudinal excitation spectrum at intermediate wavenumbers, accessible to inelastic 
neutron scattering experiments. 

The main objective of the present work is to check and extend the predictions of [13] by 
‘exact’ molecular dynamic (MO) simulations of the same model. The calculated density and 
charge fluctuation spectra are analysed, assuming the validity of the extended hydrodynamic 
mode concept of De Schepper and Cohen [14], which has been successfully used in recent 
analyses of inelastic neutron scattering spectra of simple liquids [IS]. In addition to the 
data on the dispersion and damping of the collective modes, the present MD simulations 
also yield information on the concentration dependence of the pair structure, and on the 
self-diffusion of the anions and cations, 
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0.85), indicating the strong influence of charge ordering. 

2. The screened coulomb model 

The M,(MX)I-, melt contains N I  cations of charge +e and mass ml, NZ anions of charge 
-e and mass mz, and NO = NI - N z  valence electrons ensuring overall electrical neuhality. 
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Let N = N I  + Nz be the total number of ions; the number concentrations are x, = N, /N 
(or = 1,2), while the molar concentration of metal is x = (XI - X Z ) / X I .  

If V denotes the total volume occupied by the melt, the total ionic and electronic number 
densities are n = N /  V and no = nx/ (2  - x) .  A convenient length scale is the ion sphere 
radius a = (3/4nn)'I3. The ions are assumed to interact via the following set of model 
pair potentials: , 

z,zpe2 
r vu&) = (1 - &)B exp(-Ar) + -e-''A 

where 1 < a, ,3 < 2 are species indices, S,p is the Kronecker symbol, and z, ~= &I is the 
valence of ion species or. 

The first term on the RHS of (2.1) describes the short-range Bom-Mayer repulsion 
between unlike ions; the parameters A and B are chosen to be identical to those of.the 
Tosi-Fumi potential for the corresponding pure molten salt (x = 0) [I61 (A = 2.967A-I. 
B = 2.86 x erg). The second term is the screened Coulomb potential between ions. 
The screening length A  is^ determined by the Fermi gas of valence electrons. In the linear 
response regime. the exact long-wavelength (k -+ 0) limit of the dielectric function Eo(k) 
yields the following expression for A [17]: 

where kTF is the Thomas-Fermi wavenumber, xm and xk are the isothermal 
compressibilities of the interacting and ideal electron gases respectively. The familiar 
Thomas-Fermi result is recovered if electron correlations are neglected, i.e. if xm = xi:. 
kw is density and temperature dependens but except at very low metal concentrations (x + 
0) the Fermi temperature TF of the valence electrons greatly exceeds the thermodynamic 
temperature T ,  so that the temperature dependence may be safely neglected, i.e. k v  may 
be taken equal to its zero-temperature value (degenerate Fermi gas): 

where a* = h2/moe2 is the Bohr radius. thus 
slowly increases as the metal concentration is lowered, and diverges in the pure-salt 
limit x = 0, where the ions interact via the bare (unscreened) Coulomb potential. The 
potential model (2.1) reduces in that limit to the rigid-ion Tosi-Fumi potential, without the 
attractive van der Waals dispersion terms that are expected to contribute significantly to 
the thermodynamic properties, in particular to the pressure, but should much less affect the 
pair sbucture. This point was confirmed by an explicit comparison of the partial structure 
factors S,p(k)  calculated with and without the dispersion terms in [13]. 

The linear screening description is known to be reasonably accurate in the pure-metal 
limit [7] ,  but the Thomas-Fermi form of the electron dielectric function eo(k) is too crude 
an approximation to yield a realistic effective pair potential between cations. In fact, it was 
shown in [ 131 that the Thomas-Fermi approximation overestimates the screening power of 
the degenerate electron gas, because of the improper treatment of the Pauli principle. It 
was further shown that a proper rescaling of the Thomas-Fermi screening length in the pair 
potential (2.1) leads to a significant improvement in the agreement between the theoretical 

The screening length A, = 
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and experimental structure factors for liquid K around T N 1000K. Thus the screening 
length was chosen to be 
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UX)  = <ATF(X) (2.4) 

where the best agreement between theory and experiment is achieved for < N 1.6 in the 
pure metal (x  = 1). The same value of the scaling factor < was subsequently kept for all 
other concentrations; hence, the concentration dependence of the screening length is entirely 
contained in the Thomas-Fermi behaviour (2.3). 

These prescriptions uniquely determine the statedependent pair potentials at all 
concentrations; this model is not meant to provide a realistic description of the effective 
interactions between ions, but rather represents the simplest interpolation between the pure- 
metal and pure-salt states, for which the model (2.1) potential has been shown to yield a 
satisfactory description [13]. The model is expected to be reasonable for x = 0 and on the 
metal-rich side, but should be at its worst for low but finite metal concenhations, where the 
valence electrons are known to be highly localized in f-centre-like states 118, 191, which of 
course cannot be described by the linearly polarized electron background picture. 

The data presented in the following sections were obtained from microcanonical 
(constant-energy) m simulations of samples of N = 216 ions in a cubic cell, with periodic 
boundary conditions. The nearest-image truncation was applied at all concentrations except 
x = 0 (pure salt), where the unscreened Coulomb interactions were treated by Ewald 
summation of all periodic images of the ions. The simulations were carried out for potential 
parameters and ionic masses appropriate for Kx(KCI)l-r, and for molar concentrations 
x = 0.0, 0.1, 0.2, 0.3, 0.4, 0.6, 0.8, 0.9 and I. Note that the masses of K and Cl ions 
are nearly equal (ml = 39.098 and mi = 35.453 atomic mass units); the slightly different 
physical masses were adopted here, whereas a symmetric model with equal masses was used 
in [13]. Molar volumes were taken at their experimental values [3]. rather than linearly 
interpolated between the pure-phase (x = 0 and 1) values, as in [13]. These two minor 
differences between the memory function analysis of 1131 and the present m data are not 
expected to induce important changes in the static and dynamical correlation functions of 
the model. The coupled equations of motion of the N ions were numerically integrated 
using the Verlet algorithm, with a timestep (different for each simulation) small enough to 
ensure a conservation of total energy to better than l/IOOOO. The timesteps are reported in 
table I, and for each thermodynamic state 3 x 104 steps were taken after initial equilibration 
(2 x 104 timesteps); the resulting trajectories in phase space extended over several tens 
of picoseconds, and statistical averages were taken along these trajectories. The relevant 
thermodynamic parameters for each of the runs are summarized in table 1. 

3. Concentration dependence of the static structure 

The static structure of a metal-salt solution is conveniently characterized by the three partial 
pair distribution functions g,&). In the pure-metal ( x  = 1) limit, only the cation-cation 
distribution function f i l l  ( r )  survives, whereas in the pure-salt (x = 0) limit, f i l l  (r) 5 g&) 
as a consequence of the charge conjugation symmetry of the pair potential model (2.1). 

The concentration dependence of the pair StructuE is summarized in figure 1, where 
the three gus(r) are shown for eight concentrations. As expected, the pure-salt data exhibit 
pronounced charge ordering, characterized by perfect phase opposition of the oscillations 
in RI&) and 8110) E g d r ) .  
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Figure 1. m-generated par- 
tial pair dishibution functions 
g d r )  curves). gKa(r) 
(dotted curves) and gadr) 
(circles) for K,(KCI)I, SD- 
lutions at concentrations x = 
0, 0.1, 0.2, 0.3. 0.4, 0.6, 0.9 
and 1: the ofher thermody- 
namic parameters are speci- 
fied in table 1. 

As x increases, a splitting of anion-anion and cation-cation correlations is observed, the 
first peak in fit I (r) moving to shorter distances, while that of fi&) shifts to larger r, but a 
clear remnant of charge ordering is observed, even up to x 2 0.9. This behaviour agrees, 
at least qualitatively, with the predictions of earlier models [5] and of experiment [2], and 
underlines the predominance of the charge altemation pattem, even when the bare Coulomb 
interactions (which apply at x = 0) are replaced by screened Coulomb interactions, due to 
valence electron polarization. 

The three partial structure factors &p(k) were calculated by direct Fourier transformation 
of the g&). Since no attempt was made to extrapolate the latter to distances r larger 
than the cutoff imposed by the simulation, finitesize (truncation) effects show up for 
wavenumbers k < 2n/L. i n  figures 2(aXd) a comparison is made between ow MD results 
and the neutron diffraction data of Jal and co-workers 121. The agreement is seen to be 
good for x = 0 (pure salt) and reasonable (bearing in mind the crudeness of the model) 
for x = I (pure metal), as already noted in 1131. The apement is much less satisfactory 
at intermediate concentrations (x = 0.3 and 0.8). where the MD results do not reproduce 
the strong small-angle scattering revealed by neutron diffraction data: the sharp rise (or 
drop) of the experimental partial structure factors at small wavenumbers is symptomatic of 
strong concentration fluctuations, which are suppressed by the small size of the simulated 
sample. The screened Coulomb model is also found to underestimate the shucture of the 
experimental data at intermediate wavenumbers, where finite-size effects are expected to be 
negligible. 
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4. Self-diffusion of anions and cations 

The selfdiffusion constants DI  and D2 of the cations and anions were estimated, for each 
concentration, from the asymptotic behavior of the mean square displaknents as functions 
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of time: 
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(4.1) 

where the statistical average is taken over all ions of species cf. ' h o  examples of such 
Einstein plots are shown in figure 3, and the resulting estimates of 0, are plotted in figure 4. 
The statistical uncertainty is estimated to be about 5% for the cations, and somewhat larger 
for the anions at high metal concentrations where few C1- ions are left In the pure salt, 
the anion and cation diffusion constants agree within statistical uncertainties; within the 
symmetric potential model (2.1). the two diffusion constants would be strictly identical 
for equal masses. The values quoted here are close to those obtained with more realistic 
pair potentials, including attractive van der Waals interactions [20], although the latter data 
predict DZ to be slightly larger than D,. The data summarized in figure 4 indicate a roughly 
linear increase of D I  with x ,  which is not unreasonable in view of the increase of molar 
volume. Within our model, D1 increases by an order of magnitude between the puresalt 
and pure-metal limits. 

' 
2.0~10." 4.0x10~'0 6.0~10"~ 8.0x10-'' 1.C 

t (seconds) 
0' 

I I 

I 
x=0.4 

l i  
?; 4.0~10'~ 

N.. 

1 . 0 ~ 1 0 ~ ' ~  2.0~10'~ 3.0~10"~ 4.0x10"0 
t (seconds) 

Figure 3. Einstein plot of the mean- 
quare displacement (?) 3 (Ir(r) - 
r(0)l2) of cations and anions h m  
their initial positions, for x = 0.4 
(lower curves) and x = 0.9 (upper 
curvesl. 
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X x is ihe volume fraction of metal. 

DZ appears to lie below D1 over the whole range of concentrations, but up to x = 0.6 
the two diffusion constants are fairly close, the difference remaining practically always 
within the combined ermr bars. The difference is really significant only at x = 0.8 and 
x = 0.9, where the ratio D l j D z  is close. to two. This can be inNitively undemocd if we 
consider that, in this range of concentration, Cl- ions are embedded in a cloud of K+ ions 
and that the screened Coulomb interaction with the latter is attractive, leading in a sense to 
an effective chlorine mass larger than the physical mass. 

5. Extended mode analysis of charge and number density fluctuation spectra 

As already stressed in the introduction, the main objective of the present MD simulations is 
an exploration of the longitudinal collective modes in a range of wavelengths accessible to 
inelastic neutron m e r i n g  experiments. More precisely, we shall focus on the density and 
charge fluctuation spectra 

The present two-component system admits six collective dynamical variables, which 
relax slowly in the long-wavelength limit, and are associated with the six macroscopically 
conserved variables, namely the total numbers of particles of each species, the total 
momentum and total energy. These dynamical variables are 

(5.la) 

where wi.(t) denotes the velocity of ion i of species a at timet, and rij(f) = Iq&)-qp(t)l 
is the interparticle distance of the (irr;jS) pair at that time. In the one-componemt limits, 
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x = 1 and x = 0, only five conserved variables are left: in the pure salt (x = 0), the 
five hydrodynamic modes associated with these variables are supplemented by a charge 
relaxation mode (or longitudinal optic mode), which has a finite lifetime even at k = 0 [21]. 

Since the limited size of the simulation cell precludes the exploration of the long- 
wavelength (or hydrcdynamic) regime, we found it more convenient to focus on two 
variables that are linear combinations of the partial densities ph(t). namely the number 
density and the charge density: 

A Meroni and J P Hamen 

(5.24 
(5.2b) 

From these a symmetric two-by-two correlation function matrix may be constructed, with 
elements 

(5.3) 
1 

F d k ,  t )  = (~kn(t )~- .w,(O))  a, b = N or C. 

Note that p k ~ ( t )  is nearly proportional to p k ~ ( t )  in view of the fact that the mass ratio 
m,/mz is close to one. The spectra of number and charge density fluctuations are given by 
the dynamical structure factors: 

We have systematically computed FNN(k. i) and Fcc(k, t )  as functions of time for all 
concentrations x listed in table 1. and for about 20 wavenumbers k, in the range kmb 6 
k < IOk,i., where k,i. = 2n/L is the smallest wavenumber compatible with the periodic 
boundary conditions of the simulation cell: it varies between 0.225A-1 (for pure metal) 
and 0.304 A-' (for pure salt). In some instances we also computed the cross correlation 
function FNc(k, f). In the pure salt, the latter would be identically zero if the masses were 
strictly equal, due to the charge conjugation symmetry of the potential model (2.1) [22]. 

In practice, F"(k, I ) ,  F c c ( k ,  t )  and FNc(k, t )  were computed over a time window 0 < 
t < to, by averaging over time origins along the phase-space trajectory mapped out in the 
MD simulations; to was typically chosen to be 10% of the total time interval covered by the 
runs, i.e. to N lops. This time was always longer than the characteristic relaxation time 
of the correlation functions or, more precisely, than the time rc beyond which the signal 
dropped below the statistical noise level. The computed correlation functions were smoothed 
by multiplying the signal with a filter function which effectively cut off the noise beyond 
t N tc, before taking numerical Fourier transforms to calculate the dynamical structure 
factors &N(k. U),  Scc(k, U),  and S d k ,  U). 

In the spirit of the extended hydrodynamic mode picture [14,15], we have analysed 
S"(k.U) and Scc(k ,w) ,  by assuming that these spectra may be represented as 
superpositions of Lorentzians: 
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The form (5.5) automatically satisfies the even parity of S”(k. w )  and Scc(k, U): 

571 I 

S,,(k. -0) = Sa.,(k. 0). 

The first Lorentzian, l&), represent the central peak of the spectra, associated with purely 
diffusive processes, like thermal diffusion or interdiffusion of the two ionic species. The 
other Lorentzians, centred in conjugate pairs around f o , ( k ) ,  correspond to propagating 
modes (U, f 0). Since the spectra may a priori exhibit resonances associated with sound 
modes and optic modes, we have considered representations of the S,(k, o) involving either 
one (n = 1) or two (n = 2) conjugate pairs. The 3n + 2  coefficients Ao(k), yo(k), A,(k),  
U&) and y.(k) were determined, for each k ,  by least-squares fitting of the representations 

The pracrical implementation amounted to minimizing the following mean square 
(5.5) to the MD data for S”(k. 0) and Scc(k, 0). 

deviation: 

where. mi = iAw, Am = 2rrJto is the resolution of the m-generated spectra, and p is the 
number of positive frequencies mi for which the spectra were calculated. The minimizations 
with respect to the 3n + 2 parameters A,, w, and yu were carried out independently for 
S”(k. w )  and Scc(k, o), without making any attempt to correlate apriori the two sets of 
parameters, which are obviously not independent since the collective modes are expected 
to contribute, albeit with different weights, to both spectra. For each wavenumber k,  the 
minimizations were carried out with one (n = 0). three (a = 1) and five (n = 2 )  Lorentzians. 
The improvement of the least-squares fit achieved with a larger number of Lorentzians 
was considered to be significant only when it led to a decrease of ,y2, overcoming the 
unfavourable bias factor (3n + 2) in the definition (5.6). 

It is clear that the representations (5.5) do not apply in the high-frequency limit, since 
they lead to divergent frequency sum rules [23]. Hence it is not surprising that the Lorentzian 
fits do not yield accurate wings of the MD data for the spectra S..(k, U);  the latter decay 
much faster than I /wz, reflecting the trivial free-particle motion which dominates the high- 
frequency behaviour, but hardly affects the collective dynamics in which we are interested 
here. 

The results of the above analysis are summarized in the following section, starting with 
the limiting situation of pure metal (x = 1). 

6. Concentration dependence of the extended collective modes 

The case of the pure metal is the simplest to analyse, because only one correlation function 
(S,vN(k. U )  = &(k, 0)) is left. Numerous n e w ”  and numerical experiments have been 
devoted to collective dynamics in liquid alkali metals [24], but almost exclusively near the 
melting poinS the present data are, to the best of our knowledge, the first MD results 
for an expanded liquid metal (T Y 103K). MD simulations were carried ont for the 
experimental molar volume (V  = 61 cm3 mol-’) and for a significantly lower molar volume 
(V = 50cm3mol-’), close to that of the pure salt (x = 0); no qualitative differences 
were found between the two sets of data. The density fluctuation spectra are dominated 
by extremely sharp Brillouin peaks, up to wavenumbers k of the order of 1A-I; an 



5712 A Meroni and J P Hansen 

-1.0 1 I 
0.0 3.0~10. '~ 6.0x10''z 

1 (seconds) 

r 3 I!#!mi 4.0 

2.0 

0.0 
-20.0 -10.0 0.0 10.0 20.0 

"w 

Figures. m results forfhe normalized den- 
sity aumorrelation function F(k, f) (upper 
c w e )  and its spec" (dynamical smcture 
factor) S(k .  w) (lower curfe) for pure K, and 
for a wavenumter k = 0.318A-'. The dot- 
ted curve in the upper figure represents the 
raw m data while ihe full curve represents 
the smoothed (filtered) data explained in 
the i e x ~  Angular frequencies w are in THz 

example is shown in figure 5. In that range of k values, there is practically no trace 
of a central Rayleigh peak, as would be expected if the constant-pressure and constant- 
volume specific heats were very close (Cp = CV), leading to a very small value of the 
Landau-Placzek ratio I R / ~ I B  = Cp/Cv - 1 in the hydrodynamic (small-k) limit. It may 
be concluded that Cp N Cv (i.e. that entropy fluctuations are small) as is indeed the 
case in simple liquid metals. Not surprisingly, the three-Lorentzian fits lead to x2 values 
which are an order of magnitude smaller than those achieved with a single Lorentzian up to 
k N_ 1 A-', and only beyond k N_ 1.5A-' does the singlehrentzian description lead to a 
comparable accuracy. The dispersion curve o(k) is pictured in figure 6, which also shows 
the Lorentzian width parameter y,. The shape of the dispersion curve for the extended 
sound mode closely resembles that observed in earlier experimental and numerical work on 
liquid alkali metals [24], going through a well defined maximum, but there is no evidence 
for a sound propagation gap for wavenumbers in the vicinity of the Brillouin zone boundary 
(k N ISA-'). 

The observed spectra S,.(k, o) change dramatically when salt is added, even in modest 
proportions, to the metal. Indeed, the relaxation of concentration fluctuations, linked to the 
interdiffusion of the two ionic species, lead to a strong central peak in the spectra, i.e. to an 
enhancement of the Lorentzian lo(k, o) in the representation (5.5). On the metal-rich side, 
MD simulations were carried out for concentrations x = 0.9 and x = 0.8, with a qualitatively 
similar result. S"(k, 0) and Sc&, 0) have similar shapes, with well separated Brillouin 
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side peaks up to k Y 0.7 A-’ for x = 0.8, but the relative intensity of the cennal peak is 
much larger in S , V N ( ~ .  o) compared to Scc(k, U), as illustrated in figure 7, for k = 0.341. 
The confrontation with the pure-metal data at a comparable wavenumber (shown in figure 5), 
is striking. The dispersion curves, (ol(k), y,(k)) against k, derived from three-Lorentzian 
fits to S N , V ( ~ .  w)  and Scc(k, o), are plotted in figure 8. The frequencies ol(k) associated 
with the two spectra are close, at all wavenumbers, giving much weight to the interpretation 
that they correspond to the same collective acoustic mode. This mode also shows up quite 
clearly in the cross-correlation spectrum SNc(k, o), pictured in figure 9; notice that the 
interdiffusion relaxation mode contributes a negative central peak to that spectrum. 

Fwre 6. Dispersion c w e  of the lon- 
gitudinal mode in the pure m e a  The 
dots carrespond to the resonance fm- 
quency 01 in a three-Loren- repm 
sentation (5.5) of the dynamical s @ c m  
factor, while the vertical bars represent 
the width n of the resonance. 

Comparison of figures 6 and 8 shows that the dispersion curves for the extended sound 
mode are very similar, both qualitatively and quantitatively, for the pure-metal (x = 1) 
and the metal-rich solution (x = 0.8). The propagation of sound modes seems to be little 
affected by the presence of anions in moderate proportions. In particular the sound velocity 
hardly changes, as may be seen from table 1. 

The situation changes more significantly in the range of intermediate concenmtions, 
where we have explored x = 0.6, 0.4 and 0.3. Most noteworthy, separate Brillouin si& 
peaks no longer appear in S”(k, o), even at the smallest accessible wavenumbers, but 
are replaced by distinct shoulders on the high-frequency side of the intense central peak. 
Examples of SNN(R,O)  obtained for x = 0.6 are shown in figure IO(a). &(k, a), on the 
other hand, continues to exhibit well defined sharp side peaks at small wavenumbers, as may 
be seen from figure IO(@. A three-Lorentzian analysis of the two sets of spectra yields the 
dispersion curves shown in figures I 1  and 12 for x = 0.6 and 0.4. Apart from a stronger 
damping, a splitting of the dispersion curves associated with number and charge density 
fluctuations is now clearly apparent. The two dispersion curves cross at k zz 0.7A-l, the 
frequencies oc(k) &ociated with the charge fluctuations lying well above the corresponding 
characteristic frequencies ”(k) of density fluctuations fork < 0.7A-l, the contrary being 
true above that wavenumber. Guided by the theoretical analysis of [13], we associate oN(k)  
with the sound mode, whereas wc(k) may be regarded as the characteristic frequency of a 
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Figure 8. Dispersion curves derived from 
the density fluctuation spectra S"(k. W )  (filled 
circles) and charge flumalion spectra Scc(k. w) 
(open circles) for a metal concenuaIion x = 0.8. 

high-frequency optic mode. We consider the latter to be a remnam of the well known optic 
(or plasmon) mode observed in molten salts [ZZ], i.e. in the x = 0 limit, to which we shall 
retum later. 

The existence of two extended longitudinal collective modes should a priori imprint 
a signature on the two spectral functions, although one may expect the sound mode to 
dominate the density fluctuation spectrum S"(k, o), and the optic mode to dominate the 
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Figye 9. Specmun SNdk,w) (in seconds) of 
the density-chqe crosscorrelation M o n  for 
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k = 0.241 (full curve), k = 0.418 (open circles), 
k~ = 0.683 (filled circles) and k = 0.863A-' 
(squares). The amws indicate $e positions of 
the peaks in the density fluctuation spectrmn 
S"(k,w) at the same wavenumben. 

charge fluctuation spectrum &(k, 0). In an attempt to find evidence for two propagating 
extended modes in each of the two spectra we carried out least-squares fits with a five- 
hentz ian  representation (n = 2 in (5.5)). While no significant lowering of x2. relative 
to a three-hrentzian representation, was found for SNn(k, o), the improvement tumed out 
to be sizeable (up to a factor of two) in the case of Scc(k, o). However. while the values 
of the frequency q ( k )  changed little in going from a three-Lorentzian to a five-lorentzian 
representation, our MD data were not sufficiently a m a t e  to allow any firm conclusions 
conceming the second frequency y ( k ) .  

In the salt-rich regime ( x  = 0.2 and x = 0.1) the collective behaviour becomes more and 
more ionic like, featuring very pronounced optic side peaks in &(k, o) at increasingly high 
frequencies, as illustrated in figure 13(u) for x = 0.1. Notice, however, that the side peaks 
vanish both at small wavenumbers (k  < 0.4A-I) and large wavenumbers (k 2 1.2A-I); 
beyond this upper limit, &(k, o) narrows dramatically, indicating a considerable slowing 
down of charge relaxation [22]. 

The characteristic optic frequency o c ( k )  at the smallest accessible wavenumber almost 
doubles in going from x = 0.2 to x = 0.1, a circumstance which we attribute to the 
decreasing screening power of the electrons (cf. the values of the effective screening length 
in table 1). The dispersion curves of the optic and acoustic modes, as determined from thm- 
Lorentzian fits to Scc(k, o) and S N , V ( ~ ,  w), are. shown in figures 14 and 15 for x = 0.2 and 
x = 0.1 respectively. The five Lorentzian fits reduce the ,yz values only slightly, without 
allowing any new insight, due again to the insufficient statistical quality of the m data. 

The pure-salt ( x  = 0) results are in agreement with expectation: the charge fluctuation 
spechum exhibits a pair of very sharp optic ('plasmon') peaks, with nearly k-independent 
damping, up to k 2 1.2A-I. whereafter the spectrum shrinks to an extremely narrow central 
peak, which gradually broadens beyond k N 1.6A-'. This scenario, partly illustrated in 
figure 13(b), agrees with previous simulations of other alkali halide melts [E, 251. The plot 
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Figure 11. Dispersion curve-s for x = 0.6;’ 
symbols as in figure 8. 

3 

: 5.0 

0.0 1.2 Figure 12. ‘Dispersion curves for x = 0.4: 0.0 0.3 0.6 0.9 
k (angsirom) symbols BE in figure 8. 

of o c ( k )  against k in figure 16 exhibits the usual pronounced negative dispersion, typical 
of strongly coupled ionic systems. In view of the sharpness of the plasmon peaks, the long- 
wavelength limit of &k) (which is not directly accessible to the MD simulations) may be 
estimated from the ratio of the fourth- and second-frequency moments of Scc(k ,  a). which 
is easily calculated, with the result [22,26] 

where M denotes the reduced mass of an anion-cation pair, op = (27rneZ/M)” is the 
plasma frequency and #i2(r) is the shea-range part (i.e. the Born-Mayer repulsion) of the 
anion-cation pair potential (2.1). Calculating (6.1) with the mgenerated pair distribution 
function RI&). one obtains the estimate o c ( k  = 0) = 40.7 THz, which extrapolates nicely 
the optic branch of the dispersion curves in figure 16 to zero wavenumber. 
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Pi? 15. Dispsion c u ~ e s  for metal 
concentration x = 0.1; symbols is in 
f l g u ~  8. 

Another check of the consistency of the m data is provided by the width of the central 
peak. The five-lorentzian analysis, which yields the best fit to the low-frequency behaviour 
of Scc(k,w), indicates a nearly constant width up to k 2 0.6A-'. Neglecting the k- 
dependent contribution of entropy fluctuations, the small-k, w limit of SC& o) is given 
precisely by a Lorentzian of width govemed by the Dc conductivity U [12,27]: 

Comparing (6.2) to the observed width, cr is estimated to be 0.8THz. which compares 
favourably with the estimate U N 1.1 THz based on the Nemst-Einstein relation [22] 
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where D, and & are taken from table 1; negative deviations of about 20% from the 
approximate relation (6.3) are typical of molten alkali halides [2&28]. 

Since mass and charge density fluctuations are practically orthogonal in the present 
model, the optic mode does not affect S N N ( ~ .  U). The latter does not exhibit Brillouin side 
peaks, even at the lowest wavenumber accessible in the present simulations (k z 0.3 A-'), 
but a three-brentzian fit points towards heavily damped extended sound modes up to 
k Y 0.8 A-'. Sound modes are known to be heavily damped in molten-salt simulations [22], 
but the present data provide convincing evidence for a propagating acoustic mode over a 
range of wavenumbers that are easily accessible to MD simulations and inelastic neutron 
scattering experiments. 

Direct evaluation of S ~ c ( k ,  U )  for several wavenumbers shows that, as expected, the 
cross correlations are totally negligible (i.e. remain within the statistical noise level), except 
at very low frequencies. 

7. Discussion 

The present set of MD simulations of longitudinal collective modes in a simple model of 
metal-salt solutions confirms, at least qualitatively, the crossover scenario predicted by the 
generalized hydrodynamics analysis of [13]. Density fluctuations in the expanded liquid 
metal are dominated by a surprisingly long-lived acoustic mode, which propagates up to 
k r 1.5 .&-I, at which wavenumber the imaginary part of the frequency becomes comparable 
to its real part. Contrary to the situation in liquids close to the triple point 114,151, the 
extended mode analysis shows no evidence of a propagation gap in the vicinity of the 
Brillouin zone boundary. 

The generalized sound dispersion curve and damping hardly change upon adding a small 
amount of salt (in practice down to x z 0.8). and the sound mode is also apparent in the 
charge fluctuation spectrum, &(k, 0). 

However, as x is further lowered into the equimolar range, the extended mode analysis 
based on the phenomenological representation (5.5) points towards the coexistence of two 
propagating longitudinal modes: the extended sound mode, which becomes more and more 
heavily damped as x decreases, while dominating the density fluctuation spectrum; and a 
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higher-frequency mode, which gradually dominates the charge fluctuation spechum, which 
we tentatively identify with the extended optic mode predicted by the themtical analysis 
of [13]. The latter is not a hydrodynamic mode, since it cannot'be associated with a 
conserved momentum variable, but rather a remnant of the propagating high-frequency 
plasmon mode typical of ionic liquids; this mode is pre-eminent in &(k, o) of the pure 
salt (x = 0), where it gives rise to long-lived resonances with a distinctly negative dispersion. 
As metal is added, the valence electrons (which are assumed to be completely ,delocalized 
in the present model) screen the long-ranged Coulomb interactions between ions, leading 
to a dramatic lowering of the optic frequency at long wavelengths. 

In principle the two propagating longitudinal modes should be visible, although with 
different weights, in both fluctuation spectra at intermediate concentrations, where number 
and charge densities are not even approximately orthogonal. For that reason we have 
attempted least-squares fits to the MD spectra with five Lorentzians (i.e. n = 2 in the 
representation (5.5)). The resulting weighted ,yz tumed out to be invariably larger than 
that achieved with only three Lorentzians (n = 1) in the case of S"(k, o), bui significant 
improvements were observed for the charge fluctuation spechum Scc(k, o) in several cases. 
However, the data were of insufficient statistical quality to allow any firm conclusions to be 
drawn conceming the non-dominant propagating mode. We believe that the extended mode 
analysis may be successfully generalized to~situations with more than one propagating mode 
only if extremely accurate experimental or simulation data are available. 

Finally, some comments concerning the validity of the simple model, embodied in the 
potentials (2.1). are in order. As already stated earlier the model should regarded as 
the simplest possible interpolation between the puremetal and pure-salt limits, for which 
it retains the essential physical features. The simple linear Thomas-Fermi description of 
electron screening at intermediate densities is certainly too crude to allow quanti.@tively 
reliable predictions for future experiments, although it may have qualitative validity. An 
obvious drawback of the above ~ linear screening model is that it does not account for 
the obvious asymmetry in the short-range screening of an'ions and cations by the valence 
elect". The latter attract, while the former repels the electrons, and the com3ponding 
difference in the local polarization is not properly accounted for by the long-wavelength 
form of the electron dielectric function co(k). Another defect of the model is that it neglects 
ionic polarization, 

In order to overcome the shortcomings of the model investigated in this paper (for 
which the MD simulations yield, in principle, 'exact' results), we are presently exploring 
an ab initio approach, combining MD for the ions and density functional theory for the 
valence electrons, in view of a more realistic description of metal-salt solutions. Since 
long phase-space trajectories are required in a study of collective dynamics, the original 
Car-Paninello method [291, based on the Kohn-Sham formulation of density functional 
theory, is not at present applicable. An alternative scheme, based on improved Thomas- 
Fermi-von Weiszacker density functionals,  is^ presently being developed [30]. 
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